The 4th IMA Conference on The Mathematical Challenges of Big Data is issuing a Call for Papers for both contributed talks and posters. Mathematical foundations of data science and its ongoing challenges are rapidly growing fields, encompassing areas such as: network science, machine learning, modelling, information theory, deep and reinforcement learning, applied probability and random matrix theory. Applying deeper mathematics to data is changing the way we understand the environment, health, technology, quantitative humanities, the natural sciences, and beyond ‐ with increasing roles in society and industry. This conference brings together researchers and practitioners to highlight key developments in the state‐of‐the art and find common ground where theory and practice meet, to shape future directions and maximize impact. We particularly welcome talks aimed to inform on recent developments in theory or methodology that may have applied consequences, as well as reports of diverse applications that have led to interesting successes or uncovered new challenges. Contributed talks and posters are welcomed from the mathematically oriented data science community. Contributions will be selected based on brief abstracts and can be based on previously unpresented results, or recent material originally presented elsewhere. We encourage contributions from both established and early career researchers. Contributions will be assigned to talks or posters based on the authors request as well as the views of the organizing committee on the suitability of the results. The conference will be held in person with the option to attend remotely where needed. Confirmed Invited Speakers Dr Heather Battey, Imperial College London Prof. Nando de Freitas, Google Deep Mind Prof. Lenka Zdebrova, EPFL (Swiss Federal Institute Technology) Prof. Tiago de Paula Peixoto, Central European University