Richard Kenyon received his PhD from Princeton University in 1990 under the direction of William Thurston. After a postdoc at IHES, he held positions at CNRS in Grenoble, Lyon, and Orsay, before becoming a professor at UBC for 3 years and then moving to Brown University where he is currently the William R. Kenan Jr. University Professor of Mathematics. He was awarded the CNRS bronze medal, the Rollo Davidson prize and the Loève prize; he is a member of the American Academy of Arts and Sciences, and is currently a Simons Investigator.
Richard Kenyon’s 2017 Schramm lecture will be given at the 39th Conference on Stochastic Processes and their Applications (SPA) in Moscow (July 24–28, 2017). See http://www.spa2017.org/
Limit shapes beyond dimers
The boxed plane partition (see Figure 1) is a tiling of a hexagon of side length
Fig. 1: The boxed plane partition
In the limit
where
There is a similar limit shape phenomenon for tilings of any other region, obtained by minimizing the surface tension with other boundary conditions [ref2, ref4].
The main tool for studying the lozenge tiling model is the determinantal formula describing the correlations between individual tiles. These are based on the formula due to Kasteleyn [ref3] which shows that the number of lozenge tilings of a simply connected polygonal region is the determinant of the adjacency matrix of an underlying graph.
In joint work with Jan de Gier and Sam Watson we consider a generalization of the lozenge tiling model, which we call the five-vertex model since it is a special case of the well-known six-vertex model in which one of the six local configurations is disallowed. This model is, concretely, a different measure on the same space of lozenge tilings: we simply give a configuration a weight probability proportional to
adjacencies between two of the three types of tiles. The lozenge tiling model is the case
This new measure is no longer determinantal. Thus we must rely on the Bethe Ansatz method for counting the number of configurations and computing correlations. This is notoriously difficult to carry out and indeed the solution to the general six-vertex model is a well-known open problem. Somewhat remarkably, this calculation can be performed for the five-vertex model to get a complete limit shape theory: we can give an explicit PDE describing the limit shapes associated to the model.
Like the lozenge model, limit shapes are obtained by minimizing a surface tension
over the triangle 𝒩
see Figure 3. Unlike the lozenge case there is a certain curve in 𝒩
along which
The relation between
Fig. 2: Given
The Euler-Lagrange equation for the variational problem is the PDE that any minimizer will satisfy. In this case the PDE, when written in terms of the variables
where
This research was supported by the NSF and the Simons foundation.
Fig. 3: Minus surface tension as a function of
References
References
[1] H. Cohn, M. Larsen, J. Propp, The shape of a typical boxed plane partition, New York J. Math. 4 (1998), 137–165.
[2] H. Cohn, R. Kenyon, J. Propp, A variational principle for domino tilings. J. Amer. Math. Soc. 14 (2001), no. 2, 297–346.
[3] P. Kasteleyn, Dimer statistics and phase transitions. J. Mathematical Phys. 4 1963 287–293.
[4] R. Kenyon, A. Okounkov, Limit shapes and the complex Burgers equation. Acta Math. 199 (2007), no. 2, 263–302.
Comments on “Schramm Lecture preview: Richard Kenyon”