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Aging changes brain functions and structures in a downward trajectory
and consequently leads to a decline in neurocognitive performance. Our re-
search is motivated by understanding whether and to what extent the age-
effect on cognitive decline can be explained by neuroimaging measures. We
consider a new mediation model with age as an independent variable, while
treating neuroimaging data and cognitive function as the multiple mediators
and outcome, respectively. Given that the brain is the primary organ responsi-
ble for cognitive function, it is neurobiologically intuitive that the age-related
decline in cognition is largely mediated through neuroimaging measures. Ad-
ditionally, cognitive function is localized to certain regions of the brain rather
than being a function of the entire brain. Taking these factors into account,
we propose a novel mediation model with multiple mediators that aims to
maximally uncover the mediation pathway while simultaneously identifying
active neuroimaging mediators by imposing an ℓ1 penalty and ℓ2 constraint.
We develop a computationally efficient algorithm to handle the nonconvex
optimization problem of penalized mediation proportion maximization. We
apply our method to a data example of 37,441 participants of UK Biobank
with cortical gray-matter thickness and white-matter integrity measures and
cognitive performance scores. Our results show that the mediation effect of
brain-imaging variables can explain 97% of age-related cognitive decline.

1. Introduction. Research into brain aging has garnered increasing interest due to the
rapid growth of the elderly population throughout the world (Park and Reuter-Lorenz, 2009).
Among all the symptoms of neurodegeneration, cognitive decline is the hallmark of brain
aging (Morrison and Baxter, 2012). Understanding the underlying changes in the central ner-
vous system related to cognitive decline has become an imperative task. Neuroimaging has a
central role in capturing brain functional and structural changes related to aging and cogni-
tive functions (Liem et al., 2017; Grady, 1998, 2000). Recent research has established brain
charts for the human lifespan that characterize brain metrics at all stages of life (Bethlehem
et al., 2022). In addition, neuroimaging-based brain-aging calculators have been widely used
to identify risk factors associated with abnormal brain aging (Cole and Franke, 2017; Franke
and Gaser, 2019; Niu et al., 2020; Butler et al., 2021). On the other hand, numerous studies
have identified the brain locations that are correlated with different cognitive functions (Kaup
et al., 2011; Näslund et al., 2000). However, to date, no comprehensive model has been devel-
oped that integrates age, neuroimaging data, and cognitive function to elucidate the impact
of aging on cognitive function by altering the underlying neurobiological basis, the brain.
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In the current research, we consider a general neurobiological pathway in which aging
changes brain functions and structures. These changes consequently lead to age-related cog-
nitive decline. This pathway is neurobiologically sensible because (i) aging causes changes
in the central nervous system, (ii) the brain is the primary organ that determines cognitive
performance, and (iii) the reverse causal links in (i) and (ii) are not valid (Salthouse, 2011).
Therefore, we can represent the aforementioned causal pathway by a mediation model (Baron
and Kenny, 1986; VanderWeele and Vansteelandt, 2014) in which brain-imaging variables are
multiple mediators.

In recent years, advanced statistical mediation models (Zhang et al., 2016; Chén et al.,
2018; Zhao, Lindquist and Caffo, 2020; Zhao, Li and Caffo, 2021; Zhao and Luo, 2022) for
brain-imaging data have been developed and successfully applied to various aspects of neuro-
science providing biologically meaningful results. These methods leverage high-dimensional
statistical techniques such as regression shrinkage and low-rank factorization to identify the
mediation effects while accounting for the high-throughput variables. However, existing mul-
tivariate mediation methods are not tailored for our study’s purpose, because our objective
is to develop a neurobiologically plausible mediation model that achieves two goals simulta-
neously: (i) fully uncovering the mediation effect of neuroimaging data for the aging effect
on cognitive decline and (ii) identifying brain regions involved in the cognitive aging pro-
cess. For example, under the linear structural equation model (LSEM) framework, regression
shrinkage methods are employed by Zhao, Li and Caffo (2021); Zhao and Luo (2022) to
select mediation pathways with parsimony. However, these methods are not specifically de-
signed to fully uncover the mediation proportion. It is worth noting that direct shrinkage on
the regression coefficients in LSEM may lead to a biased estimation of mediation effects.
Consequently, the mediation proportion for multivariate mediation analysis can be largely
attenuated. In many applications, the attenuation of mediation proportions can be mislead-
ing, as it may result in an underestimation of the importance of mediators in the underlying
process. For example, in our application that investigates the mediation role of the brain in
age-related cognitive decline, the attenuation in the mediation effect may lead to an under-
estimation of the brain’s role in explaining age-induced cognitive decline. To the best of our
knowledge, the methodological gap we identified has not been closed. Therefore, we pro-
pose a new mediation model with multiple mediators that maximally uncovers the mediation
pathway (MMP).

Built upon the commonly used LSEM framework, MMP introduces a novel objective func-
tion that implicitly integrates both mediator and outcome regression models in the LSEM
(Chén et al., 2018; Zhao and Luo, 2022). This integrative formulation enables the direct
maximization of the mediation effect. MMP adopts a widely used strategy to handle multi-
variate data in complex statistical analysis frameworks: maximization. For example, canoni-
cal correlation analysis (CCA) identifies and highlights the underlying associations between
two sets of multivariate variables by finding linear combinations that maximize the correla-
tion between them. The associations uncovered through this approach may be overlooked or
disregarded by other statistical analysis methods (e.g., performing dimension reduction sepa-
rately for the two sets of variables or maximizing likelihood with regression shrinkage). Fol-
lowing this rationale, our objective is to maximally uncover the mediation pathway, thereby
revealing the three-way associations among the exposure, mediator, and outcome variables.
Furthermore, to handle multiple neuroimaging mediators and enhance estimation stability,
we incorporate both the ℓ1 penalty and ℓ2 constraint in the objective function. These regu-
larization terms are well-suited for parsimonious mediator selection from high-dimensional
correlated neuroimaging variables. Therefore, MMP provides an accurate estimate of the ag-
gregate mediation effect of multiple mediators that maximally uncovers the mediation path-
way, while effectively avoiding the overinflation of the estimated mediation proportion (see
Section 4).
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The rationale behind maximizing the MP is grounded in the distinctive characteristics of
the brain, which plays a pivotal role in governing cognitive functions. Since the brain is the
exclusive primary organ responsible for these functions, the pursuit of maximizing MP in this
context is not only neurobiologically logical but also critical for gaining in-depth understand-
ing of the mechanism of age-induced cognitive decline through the brain. The brain regions
that are involved in maximizing MP can be considered to play the most influential roles in
mediating cognitive aging. Consequently, by targeting the regions identified by the method,
it contributes to the development of more effective and tailored intervention strategies for
cognitive health.

To implement our method, we devise a novel optimization algorithm by coupling the alter-
nating direction method of multipliers with semidefinite relaxation to address the challenges
posed by the nonconvexity of the optimization function and the multiple constraints in the ob-
jective function. The proposed algorithm has demonstrated robust performance and efficient
computation both in simulations and in real data examples.

Our method makes at least three novel contributions. First, MMP provides a new strategy
to handle a special type of multiple mediator data that is exposure → complex biosystem
→ clinical outcome, where the complex biosystem (mediators) is mainly responsible for the
exposure effect on the clinical outcome. In these applications, prior knowledge has been es-
tablished (e.g., by biology) that the mediation effect plays a prominent role. Built on prior
knowledge, MMP assesses the mediating role of the complex biosystem by prioritizing active
mediators that maximize the mediation effect under regularization (overcoming the inflated
estimate of the mediation effect). This approach is critical for enhancing our understanding of
the complex biosystem that drives a biological process, such as age-related cognitive decline.
Secondly, we have developed a computationally efficient and scalable algorithm to maximize
the mediation proportion while performing active mediator selection with a penalty and con-
straints. Last but not least, our findings by applying MMP to a large sample of UK biobank
(UKBB) data reveals that age-related cognitive decline is explained by the decrease in white
matter integrity, accounting for 97% of the effect, rather than the cortical thickness of grey
matter.

The rest of this paper is organized as follows. We develop our mediation model and de-
scribe the numerical algorithm in Section 2. The proposed method is applied to the UKBB
dataset in Section 3 to understand the progressive loss of cognitive function with aging. A
simulation study is presented in Section 4, which demonstrates the improved performance of
the proposed method. We conclude in Section 5 with a discussion.

2. Method.

2.1. Background. We consider a mediation model with a univariate exposure (age), mul-
tiple mediators of neuroimaging variables, and a univariate outcome (e.g., cognitive func-
tion). Let vectors X = (X1, . . . ,Xn)

⊤ and Y = (Y1, . . . , Yn)
⊤ be the age and outcome

of a study with n participants, respectively. We use an n × p matrix M = (M1, . . . ,Mp)
to represent p neuroimaging variable mediators for the n participants. A vector Mj =
(M1

j , . . . ,M
n
j )

⊤ represents the j th mediator for all participants, and a vector Mi contains
the p imaging variables for subject i = 1, . . . , n. Without loss of generality, we assume that
all variables (X,M,Y) are normalized to have a mean of 0 and a variance of 1. We first
present the model without considering confounders, and then introduce an extended model
adjusting for confounders in Section 2.2.

Under the linear structural equation modeling (LSEM) framework, the multiple mediation
model can be written in the following form (Zhao, Li and Alzheimer’s Disease Neuroimaging
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Initiative, 2022; Zhao and Luo, 2022):

(1)

Y =Xτ + e,

Mj =Xαj + ϵj , for j = 1, . . . , p,

Y =Xγ +

p∑
j=1

βjMj + ε,

where the first equation is the linear regression model, which measures the total effect τ of
X on Y.

The total effect can be decomposed into a direct effect γ and an indirect (mediation) effect∑p
j=1αjβj . The conventional mediation analysis focuses on the estimation and inference of

the direct, indirect, and total effects. The mediation proportion (MP), defined as the ratio of
the indirect effect to the total effect, (i.e.,

∑p
j=1αjβj/τ ), has been widely used to assess the

mediation effect size. With a fixed total effect τ =
∑p

j=1αjβj + γ, the MP captures how
much of the effect of an exposure on an outcome is transmitted through a mediator, which
also evaluates the relative importance of the mediating pathway over the direct pathway.
Therefore, maximally uncovering the effect of the mediation pathway is equivalent to maxi-
mizing the MP. However, in a mediation analysis with multiple mediators, robustly estimating
the MP is challenging because the effects of high-dimensional mediators can be interactive.
While advanced multivariate mediation models have been successfully developed to handle
multiple mediators in recent years (Chén et al., 2018; Zhao and Luo, 2022; Zhang et al.,
2016, among many others), their primary focus is not on maximally uncovering the medi-
ation pathway. Therefore, these methods may not maximally explain the age effect on the
cognitive outcome through neuroimaging mediators. This motivated us to develop the MMP
method.

2.2. A mediation model with multiple mediators that maximally uncovers the mediation
pathway . In order to model a neurobiological pathway of cognitive aging (i.e., the normal
aging process causes changes in multiple brain areas resulting in an aggregate impact on brain
functions, such as cognitive function), we maximize the MP with a new objective function.
This approach enables us to emphasize the mediating role of neuroimaging data on age-
induced changes in brain function.

We build the MMP approach based on the LSEM framework. Since the mediation propor-
tion of (1) is determined by the aggregate indirect effect of multiple mediators

∑p
j=1αjβj ,

we consider a more flexible aggregate mediation factor as a combination of multiple brain-
imaging mediators to maximize the mediation proportion, i.e., M∗ = Mω, where ω ∈ Rp

are the parameters of interest (See Figure 1). The use of M∗ allows for the integration of
brain regions that contribute to the brain mediation effect with different weights ω, which ul-
timately results in the maximization of the mediation proportion (MP). In addition, we make
the sparsity assumption on ω to deal with the high-dimensional nature of brain-imaging data
as well as to ensure the robustness of the estimation. Assuming that M∗ is normalized with-
out loss of generality (i.e., M∗ has a mean of 0 and a variance of 1), the mediation model
with the aggregate mediation factor M∗ has the following form:

(2)

Aggregate mediatior: M∗ =Mω,

Mediation model: M∗ =Xα+ ϵ,

Y =Xγ + βM∗ + ε.

Under (2) and given the total effect τ = αβ+γ is fixed as in (1), maximizing the mediation
proportion αβ/(αβ + γ) becomes straightforward. Here, we show that maximizing the MP
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The proposed mediation model.

Fig 1: Graphical illustrations of mediation models using neuroimaging measures as multi-
ple mediators. Top: The conventional multivariate mediation model (i.e., LSEM) includes
multiple mediation pathways through each neuroimaging mediator, where the mediation pro-
portion is determined by the sum of pathways

∑p
j=1αjβj/τ (pathways may be correlated).

Bottom: The proposed MMP approach utilizes an aggregate mediator M∗, which directly
computes the mediation proportion (αβ/τ ). Note that M∗ is calculated based on a parsimo-
nious set of mediators (e.g., M1,Mp) that are connected to the M∗ with the solid line). In our
application, MMP maximally explains the effect of age on external phenotype (i.e., cognitive
function) using a few neuroimaging mediators. Maximization of the MP results in the direct
effect (γ) being minimized (dashed line)."

can be achieved by optimizing ω. We assume that (i) the signs of total, direct, and indirect
effects are consistent, and (ii) without loss of generality in our application, we assign a nega-
tive sign to the effects since cognitive function declines with aging. Generally, in the context
of mediation analysis, MP can fall outside the [0,1] range when the direct and indirect ef-
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fects have opposite signs, a phenomenon referred to as inconsistent mediation (MacKinnon,
Krull and Lockwood, 2000). In our application and many other studies (e.g., brain and cog-
nitive function development in adolescents), the inconsistent mediation is not neurobiologi-
cally plausible. Therefore, we exclude inconsistent mediation for our method development.
Therefore, instead of directly maximizing the aggregate MP, we maximize −αβ. Note that
while we make the aforementioned assumptions, the MMP method can be easily adapted
to general scenarios, provided that the total effect remains fixed. Furthermore, we have
α∝X⊤M∗, and β proportional to the partial correlation between M∗ and the outcome given
age, i.e., β ∝ E⊤

M∗|XEY|X. However, M∗ is unknown and determined by multiple mediators
and estimating parameters ω. We can calculate EM∗|X = M∗ −Xα = (In − P)Mω, and
EY|X =Y −Xτ , where P =X(X⊤X)−1X⊤ represents the projection matrix. Therefore,
we transform the objective of maximizing the MP into optimizing the following quadratic
form with regard to the estimating parameters ω and input data:

Maximize

(
αβ

αβ + γ

)
(i)
=Maximize |αβ| (ii)= MinimizeM⊤

∗ XE⊤
Y|XEM∗|X

=Minimize
1

2
ω⊤M⊤XE⊤

Y|X (In −P)Mω.

To handle the massive neuroimaging mediators, we further regularize the quadratic form
by introducing penalty terms. Therefore, our primary objective function is:

(3)
argmin
ω∈Rp

1

2
ω⊤M⊤XE⊤

Y|X (In −P)Mω+ λ∥ω∥1

subject to ∥Mω∥22 = 1 and ⟨Mω,1⟩= 0.

The ℓ1 norm penalty (∥ · ∥1) imposes the sparsity on the solution of ω and selects only a
small set of brain-imaging variables with nonzero ω with a tuning parameter λ (Tibshirani,
1996). Moreover, because reparametrization of the indirect effect αβ with respect to ω is
valid under the assumption that the aggregate mediator M∗ is normalized (unit variance, and
centralized), we need two additional constraints i) ∥M∗∥2 = ∥Mω∥2, which is equivalent
to the ℓ2 norm of ω associated with p × p matrix M⊤M (i.e., ∥ω∥2M⊤M) ensures that the
aggregate mediator has a unit variance, ii) the inner product constraint ⟨Mω,1⟩= 0, which
is equivalent to

∑n
i=1M∗i = 0, is designed to centralize M∗, ensuring its mean is zero.

Without these constraints, the proportionality of the regression coefficients does not hold.
The joint application of ℓ1 regularization and ℓ2 constraint in (3) allows the simultaneous
selection of correlated imaging variables (Zou and Hastie, 2005). This property is desirable
for spatially and functionally dependent neuroimaging variables. In addition to facilitating
mediator selection, this regularization is also designed to prevent the overinflation of the es-
timated mediation proportion by constraining the objective function. Therefore, selecting an
appropriate tuning parameter is crucial. We adopt the commonly used Bayesian information
criterion (BIC) for objective λ selection (Zhao, Li and Alzheimer’s Disease Neuroimaging
Initiative, 2022). This criterion effectively balances both the goodness of fit of the model (i.e.,
likelihood) and the model’s complexity (i.e., the number of mediators included), ensuring a
well-calibrated trade-off between these important aspects. Our application of the ℓ1 penalty
differs from that used in (Zhao and Luo, 2022), where the ℓ1 penalty is directly applied to
shrink the indirect effects, which can lead to the underestimation of the Mediation Propor-
tion (MP). In contrast, the ℓ1 penalty in our approach is imposed on the weight vector for
obtaining the aggregate mediator factor M∗. After obtaining M∗, the MP is derived using
the single-mediator LSEM without penalty terms. Thus, our approach enables the regulariza-
tion of high-dimensional mediators without introducing an underestimation bias in the MP.
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Moreover, employing LSEM with M∗ as a single mediator enables the straightforward appli-
cation of conventional methods (such as Bootstrap or Sobel’s test) for inference on mediation
effects.

One can consider applying a generalized lasso penalty (Tibshirani and Taylor, 2011) to
ω by using a prespecified penalty matrix D ∈ Rm×p (i.e., ∥Dω∥1) to account for spatial
smoothness or dependencies across brain regions, which could be particularly beneficial in
neuroimaging studies. However, in this paper, we have chosen to employ the standard lasso
penalty to preserve the simplicity of the model. The heuristic derivation of the algorithm that
utilizes the generalized lasso penalty is provided in the Supplementary Material (Lee et al.,
2024).

Our objective function can be further extended to accommodate confounding covariates.
Let Z ∈ Rn×q denote the q confounding covariates. We account for the confounding covari-
ates with orthogonalization, i.e., β ∝ E⊤

(M∗,X)|ZE(Y,X)|Z, where E(Y,X)|Z = EY|X −Zη and
E(M∗,X)|Z = EM∗|X − Zψ = (In −Q)(In −P)Mω, and where Q = Z(Z⊤Z)−1Z⊤ is the
projection matrix. Our parameter estimation procedure is compatible with this extension be-
cause the optimization procedure can straightforwardly incorporate the adjusted projection
matrix.

Causal mediation assumptions. Next, we will briefly provide some definitions and as-
sumptions that are necessary to establish a causal interpretation of the proposed mediation
model. Following the counterfactual framework (Rubin, 1974), we denote by Mi

∗(x) and
Yi(x,M

i
∗(x)) the potential outcome of the aggregate mediator and the cognitive score (out-

come) of the i-th subject, respectively, that would have been realized when the exposure was
set to Xi = x. Within the LSEM framework and our model, these quantities can be expressed
as Mi

∗(x) = αx+ ϵi, and Yi(x,Mi
∗(x)) = γx+ βMi

∗(x) + εi, respectively. Then the total
effect (TE) of x against x′, which is defined as TE = Yi(x,M

i
∗(x)) − Yi(x

′,Mi
∗(x

′)) can
be decomposed into the summation of two distinct components: the natural indirect effect
(NIE), and the natural direct effect (NDE), which can be expressed as follows:

TE = Yi(x,M
i
∗(x))− Yi(x,M

i
∗(x

′))︸ ︷︷ ︸
NIE

+Yi(x,M
i
∗(x

′))− Yi(x
′,Mi

∗(x
′))︸ ︷︷ ︸

NDE

.

Because Yi(x,Mi
∗(x

′)) cannot be directly observed when x ̸= x′, the individual NIE, and
NDE are not identifiable. However by making use of the commonly imposed causal identifi-
cation assumption (Imai, Keele and Tingley, 2010),

(A1)
{
Yi(x

′,m∗),M
i
∗(x)

}

|= Xi|Zi

(A2) Yi(x′,m∗) |=Mi
∗(x)|Xi = x,Zi,

the average natural indirect effect, i.e., AIE = E
[
Yi(x,M

i
∗(x))− Yi(x,M

i
∗(x

∗))
]
= αβ(x−

x∗), and the average natural direct effect, i.e., ADE = E
[
Yi(x,M

i
∗(x

∗))− Yi(x
∗,Mi

∗(x
∗))

]
=

γ(x− x∗) can be identified. Note that m∗, and Zi denote the controlled aggregate mediator,
and the confounder, respectively. As discussed by Imai, Keele and Yamamoto (2010), the
cross-world independence assumption (A2) is often considered strong and unrealistic. This
can be relaxed by employing the linear structural equation model (LSEM) with independent
errors (Andrews and Didelez, 2021), which enables the identification of the NIE and NDE
even when (A2) is violated. Moreover, as highlighted by Chén et al. (2018) in cases where
the causal mediation claims cannot be made, we can still use αβ(x − x∗) to quantify the
mediation effect in exploratory mediation analysis (Serang et al., 2017).
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2.3. Estimation. In this subsection, we focus on the optimization of the objective func-
tion (3) used for ω estimation. Note that even though we have simplified the problem of
maximizing the MP to a constrained quadratic minimization problem, directly solving (3)
remains an NP-hard problem, because M⊤XE⊤

Y|X (In −P)M is not guaranteed to be posi-
tive semi-definite. Therefore, algorithms commonly utilized for convex optimization are not
directly applicable. To address this issue, we develop a tailored algorithm to circumvent the
potential nonconvexity via semidefinite relaxation (Luo et al., 2010).

Instead of directly optimizing (3) with respect to ω, we introduce an auxiliary variable
u ∈ Rp analogous to the alternating direction method of multipliers framework (ADMM,
Boyd et al. (2011)). This allows us to alternately updating {ω,u} by sequentially solving a
set of simple optimization problems. We begin by formulating the first line of the objective
function in the following scaled augmented Lagrangian form:

Lρ(ω,u,v) =
1

2
ω⊤M⊤XE⊤

Y|X(In −P)Mω+ λ∥u∥1 +
ρ

2
∥ω− u+ v∥22 −

ρ

2
∥v∥22,(4)

where v ∈Rp and ρ≥ 0 denote the dual variable and augmented Lagrangian penalty.
When M⊤XE⊤

Y|X (In −P)M is not positive semi-definite, we optimize the scaled aug-
mented Lagrangian function with semidefinite relaxation. This procedure is different from
the commonly used ADMM algorithm because updating a primal variable requires solving
a nonconvex optimization problem. Moreover, the additional constraints on ω related to the
normalization of M∗ also have to be taken into account in the optimization. Specifically, we
update the primal variable ω in (4) while preserving the normalization constraints,

ωt+1 = argmin
ω∈Rp

Lρ(ω,u
t,vt) s.t. ∥M∗∥22 = 1, ⟨Mω,1⟩= 0,(5)

where t ≥ 0 denotes the iteration number in the optimization. By introducing an additional
auxiliary variable ν ∈ R, (5) can be expressed as a homogeneous quadratically constrained
quadratic program of ω̃⊤ = (ω⊤, ν) by:

(6)
argmin
ω̃∈Rp+1

ω̃⊤Ctω̃

s.t. ω̃⊤A1ω̃
⊤ = 1, ω̃⊤A2ω̃

⊤ = 1, ω̃⊤A3ω̃
⊤ = 0.

The (p+ 1)× (p+ 1) real symmetric matrices Ct, A1, A2, and A3 are given by:

Ct =


{
2ρIp +M⊤

(
XE⊤

Y|X(In −P) + (In −P)EY|XX⊤
)
M

}
/4 ρ(vt − ut)/2

ρ(vt − ut)⊤/2 0

 ,

A1 =

(
O 0
0⊤ 1

)
, A2 =

(
M⊤M0
0⊤ 0

)
, A3 =

(
O M⊤1/2

1⊤M/2 0

)
,

where 0 and 1 denote the zero- and one-column vectors of order p and O is the p× p zero
matrix. Let Ω= ω̃ω̃⊤. Then by dropping the rank constraint rank(Ω) = 1, we can convexify
it to a form of semidefinite program (Vandenberghe and Boyd, 1996):

(7)

Ω̂t+1 = argmin
Ω∈Sp+1

Tr (CtΩ) ,

s.t.Tr (A1Ω) = 1, Tr (A2Ω) = 1, Tr (A3Ω) = 0,

Ω⪰ 0,

where Sp+1 and Ω⪰ 0 denote the space of (p+1)× (p+1) real symmetric matrices and the
positive semidefiniteness of Ω, respectively. Given the predefined tolerance level ϵ, the SDR
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problem in (7) converges to the optimum with a bounded convergence rate O(max(3, p +
1)4

√
p+ 1 log(1/ϵ)) (Luo et al., 2010). Suppose Ωt+1 is the optimal solution to (7) and that it

also satisfies rank(Ωt+1) = 1. Let Ω̂t+1 =Qt+1Λt+1Q
⊤
t+1, where Qt+1 = (qt+1

1 , . . . ,qt+1
p+1)

and Λt+1 = diag(λt+1
1 , . . . , λt+1

p+1), which is the eigendecomposition of Ω̂t+1. Since the rank

1 approximation of Ωt+1 from the obtained Ω̂t+1 is given by Ω̃t+1 = λt+1
1 qt+1

1 qt+1
1

⊤, we

set ω̃t+1 =
√
λt+1
1 qt+1

1 as a potential solution to (6). The updating rule for the auxiliary
variable u is straightforward because it can be obtained by evaluating the proximal map
(Parikh and Boyd, 2014), i.e., ut+1 = prox∥·∥1,λ/ρ(ω

t+1 + vt). The proximal map of the ℓ1
norm is the elementwise soft-thresholding operator, i.e., Sλ/ρ

(
ωt+1 + vt

)
= {sgn(ωt+1

j +

vt
j)(|ω

t+1
j + vt

j | − λ/ρ)+}pj=1, where (|ωt+1
j + vt

j | − λ/ρ)+ =max(|ωt+1
j + vt

j | − λ/ρ,0).
The numerical algorithm for solving (3) is summarized in Algorithm 1, and the detailed
derivation is provided in S1 of the Supplementary Material (Lee et al., 2024).

Algorithm 1 Algorithm for MMP
Require: Given the results from the t th step, then for the t+ 1 th step,

1: Update ωt+1 = argminω Lρ(ω,ut,vt)

i) Implement convex optimization , when M⊤XE⊤Y|X (In −P)M⪰ 0

ii) Implement SDR optimization , when M⊤XE⊤Y|X (In −P)M⪰̸ 0

Ω̂t+1 = argmin
Ω∈Sp+1

Tr (CΩ) s.t. Tr (A1Ω) = 1,Tr (A2Ω) = 1,Tr (A3Ω) = 0,Ω⪰ 0

=Qt+1Λt+1Q
⊤
t+1,

where Qt+1 = (qt+1
1 , . . . ,qt+1

p+1) and Λt+1 = diag(λt+1
1 , . . . , λt+1

p+1)

ω̃t+1 =

√
λt+1
1 qt+1

1 =

(
ωt+1

νt+1

)

2: Update ut+1 = argminuLρ(ω
t+1,u,vt)

3: Update vt+1 = vt +ωt+1 − ut+1

THEOREM 2.1. Let (ω∗,u∗) be the optimal solution of L0 in (4) satisfying ω∗−u∗ = 0,
L∗
0 be the corresponding optimal value, and v∗ be an optimal solution of the dual prob-

lem. Suppose that M⊤XE⊤
Y|X(In − P)M is positive semidefinite, then for any constant

γ ≥ 2∥v∗∥2, we have

L0(ω
(t),u(t))−L∗

0 ≤
∥u∗ − u0∥2ρI + (γ + ∥v0∥2)2/ρ

2(t+ 1)
,(8)

∥ω(t) − u(t)∥2 ≤
∥u∗ − u0∥2ρI + (γ + ∥v0∥2)2/ρ

γ(t+ 1)
,(9)

where ω(t) = 1
t+1

∑t
n=0ω

n+1,u(t) = 1
t+1

∑t
n=0u

n+1.

In Theorem 2.1, we show that our algorithm converges to the optimum with a rate of con-
vergence of O(1/t) which is a typical rate for most convex optimization algorithms (Beck,
2017). Theorem 2.1 ensures that our algorithms can accurately estimate weight parameters
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to achieve the maximal MP. The proof is provided in S2 of the Supplementary Material (Lee
et al., 2024).

3. Application.

3.1. Sample and materials. Our motivation was to understand the progressive loss of
cognitive function throughout the aging process by studying age-related changes in the hu-
man brain. We used a MMP to investigate the neurophysiology of cognitive decline during
brain aging. We utilized the UKBB data in the investigation because this cohort includes a
large sample of healthy older participants with multimodal brain-imaging data, demographic
variables, and comprehensive cognitive test results.

The analysis in this study focused on a subset of the UKBB dataset consisting of 37,441
healthy participants having access to both cognitive test results and brain imaging data. Sub-
jects in the sample were aged between 40 and 70 (mean 54.18 and standard deviation 7.40).
Moreover, 45.14% of them were male and 54.86% female. We focused on two types of
brain measures from the imaging data: (1) the microstructural integrity of white matter, de-
rived from diffusion tensor imaging (DTI) data and (2) cortical thicknesses calculated using
MRI T1 data. We processed the DTI data by following the ENIGMA-DTI analysis pipeline
(Kochunov et al., 2015; Zhao et al., 2021). We calculated the fractional anisotropy of 40 white
matter tracts to measure the condition of microstructures (i.e., myelin sheaths and axonal cell
membranes) in local brain white matter. In addition, we used FreeSurfer in a cortical recon-
struction (https://surfer.nmr.mgh.harvard.edu) to extract cortical thicknesses from 34 cortical
gray matter regions in each hemisphere defined according to the DesikanKilliany atlas (De-
sikan et al., 2006).

The cognitive function of the study participants was assessed by the various domains of
cognitive tests, including processing speed, memory, perceptual reasoning, executive func-
tion, and fluid intelligence. It has been established in the neuroscience literature that the g
factor, a measure of general intelligence (calculated by a factor analysis of multiple cognitive
tests), has the strongest association with brain aging (Hoogendam et al., 2014). Therefore,
we considered the g factor to be the outcome variable and adjusted confounding covariates,
including sex, body mass index, and education level.

3.2. MMP analysis results. We applied MMP to the aforementioned dataset. We opti-
mized the objective function in (3) to estimate ω and M∗ (λ = 0.00097). Figure 2 shows
the regularization paths for neuroimaging variables. The results indicate that the nonzero ω
values, which reflect the contributions of neuroimaging measures to the age-related cogni-
tive decline, are all derived from white-matter integrity measures. The MP obtained by the
estimated M∗ was 96.93%, which suggests that age-related cognitive decline can be almost
completely explained by white-matter integrity measures (p < 0.001).

Our results show that 30 brain regions of white matter integrity measures contribute to
age-related cognitive decline. The identified brain regions are displayed and listed in the
Supplementary Material (Lee et al., 2024). The selected white matter integrity regions have
been frequently discussed in the literature on cognitive neuroscience. For example, previous
research has demonstrated a correlation between the cingulum and cognitive function (Lin
et al., 2014). Cingulum is a white matter tract that conveys information from the cingulate
gyrus, a brain region involved in cognitive and emotional processes, to the hippocampus,
which primarily governs memory and learning (Bettio, Rajendran and Gil-Mohapel, 2017).
Consistent with this, the MMP method identifies the cingulum in both the cingulate gyrus re-
gions (CGC.L, CGC.R) and the hippocampal regions (CHG.L, CHG.R). Moreover, all brain
regions (Body, Genu, and Splenium) in the corpus callosum (CC) were selected. Even though

https://surfer.nmr.mgh.harvard.edu
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Fig 2: The regularization paths for weight vector of neuroimaging measures: weights shrink
toward zero when λ increases. Gray matter cortical thickness measurements are depicted in
gray, while white matter integrity measurements are represented using various colors. The
weights associated with white matter integrity consistently surpass those of cortical thick-
ness. This implies that white matter tracts are more likely to be preserved across different
tuning parameter choices, which indicates that white matter plays a more significant role
than cortical thickness in explaining age-induced cognitive decline.

the precise role of the corpus callosum is unclear, our findings may support the widely hy-
pothesized role of the corpus callosum in cognitive function, especially in integrating and
recalling verbal and visual information.

3.2.1. Reproducibility and robustness analysis. To evaluate the robustness of the above
results, we carried out an extensive validation analysis. Specifically, we resampled the entire
cohort 200 times. For each resample, we randomly selected 10,000 participants as the training
set. The remaining data were used as a blind testing dataset. We set the tuning parameters and
calculated the MMP parameters using only the training data. Then, we locked these parame-
ters and applied them to the testing dataset. We evaluated the MP by MMP using the testing
dataset. As shown in Figure 3, the median of the MP for the independent testing dataset was
0.9218 (the first and third quantiles were 0.8934, and 0.9527, respectively). Therefore, our
MMP approach can robustly explain a high MP for the independent testing datasets. These
results confirm that age-related cognitive decline is mediated by the white-matter integrity
measures.

To assess the consistency of the proposed model in selecting mediators from resampled
data, selection probabilities for each brain region are presented in the Supplementary Material
(Lee et al., 2024). The selection probabilities of FAs are generally high, with 18 FAs having
a probability of 1, and another 19 FAs having probabilities between 0.5 and 1. All 18 brain
regions, which have a selection probability of 1, are a subset of the previously selected 30
regions in the analysis of the entire set of observations. We display the 18 brain regions in
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Fig 3: Reproducibility analysis results. We demonstrate the performance of the MMP-based
mediation analysis based on 200 testing datasets. The three boxplots represent the indirect
effect (left), the direct effect (middle), and the mediation proportion (right). The aggregate
mediator is estimated based on the training datasets. The median of MPs from the testing
datasets remains above 92%.

Figure 4. In contrast, the selection probabilities of all CTs are close to zero with the highest
probability equal to 2%. Therefore, the selected mediators are highly consistent across all
resamples.

We performed additional analyses to evaluate i) whether FA measures were preferentially
selected over CT measures due to varying signal-to-noise ratios (SNR), and ii) the estimated
MP of 96.93% is over-inflated by our model. First, we calculated SNRs for both FA and CT
measures, and compared their mean differences, finding no significant difference between
them (see the Supplementary Material (Lee et al., 2024) for further details). We next con-
ducted separate mediation analyses using only FA measures and only CT measures, respec-
tively. The analyses revealed that the MP is only 9.45% when using CTs alone as mediators,
in contrast to a significant increase to 94.40% with FA mediators alone. The notably low MP
value obtained from CT mediation indicates that our method does not artificially inflate the
MP. Furthermore, the high MP of 94.40% obtained solely from FA mediators closely aligns
with the 96.93% reported in our main findings. Moreover, the identified white matter tracts
from the FA-only mediation analysis, detailed in the Supplementary Material (Lee et al.,
2024), show high consistency with those listed in the main findings. Finally, we conducted
an additional mediation analysis employing the method proposed by Zhang et al. (2016).
The results showed that i) 25 neuroimaging mediators, all derived from FA measures, were
selected, and ii) the MP-value is 92.96%. These results closely align with our main findings.

3.2.2. Remarks. Both cortical thickness and white-matter integrity have a downward
trend during the aging process (Kochunov et al., 2011). Decreases in both cortical thickness
and white-matter integrity are associated with the progressive loss of cognitive performance.
Therefore, performance on cognitive tests deteriorates with age for older people.

Our findings suggest that white matter integrity appears to play a more substantial role in
mediating age-related cognitive decline compared to cortical thickness. Our results are well
aligned with previous neurobiological findings that cognitive function is more attributable
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Fig 4: The 18 brain regions that are consistently selected from every resampling in Sec-
tion 3.2.1 are displayed. The abbreviations of the white matter tracts (regions) are also given.
The color code for each region corresponds to that used in Figure 2. The complete names of
the region abbreviations can be found in the Supplementary Material (Lee et al., 2024).

to the degeneration of white matter than cortical thinning in the elderly population “Cogni-
tion in healthy aging is related to regional white matter integrity, but not cortical thickness”
(Ziegler et al., 2010). Additionally, in the study conducted by Hedden et al. (2014), when si-
multaneously considering different neuroimaging measures, including FA and CT, obtained
from various imaging modalities as mediators, FA was found to be the most significant me-
diator explaining age-related cognition.

4. Simulation. In this section, using simulated data, we evaluate the performance of
our proposed mediation model and benchmark it against existing methods. We consider two
settings. In Setting 1, we investigate how well our method identifies the active mediators
and maximally uncovers the mediation effect, when the meditation pathway dominates the
relation. In Setting 2, we simulate data with none and medium mediation effects, and evaluate
if our method yields an overinflated estimate of the mediation proportion.

4.1. Uncovering the mediation pathway: identifying active mediators and MP estima-
tion. We focused on the setting where the effect of exposure on the outcome is com-
pletely mediated by multiple mediators. Specifically, we generated the univariate expo-
sure variable X ∼ Normal(0, σ2) and the multiple mediator M = Xα⊤ + E, where
α = (α1, . . . , αq,0, . . . ,0)

⊤ ∈ Rp and vec(E) ∼ Normal(0np,Σ ⊗ In). Then, we gener-
ated the outcome variable as Y = Mβ + ε, where β = (β1, . . . , βr,0, . . . ,0)

⊤ ∈ Rp and
ε∼Normal(0, σ2).
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We considered sample sizes of n ∈ {100,200}, and varied the dimension of the mediators
p ∈ {20,200}. We set q = 5 and r = 6 to reflect the number of active mediators. The magni-
tude of the non-zero coefficients was set to {αj}qj=1 = {βj}rj=1 =−0.5. We incorporated a
correlation structure between the mediators because brain-imaging mediators in our motivat-
ing data example are correlated. Specifically, we set Σ= Ip +R, where the (i, j)th element
of R is given by Rij = ρ · I (i ̸= j). We used ρ = {0,0.25,0.5}. Finally, we fixed σ2 = 1
across all settings. Each setting was replicated 100 times.

We applied the MMP and other comparable methods to the simulated datasets. These
methods include the screening based two-stage method (SIS+MCP: Zhang et al., 2016) as
implemented in the HIMA package , Directions of Mediation (DMs: Chén et al., 2018),
the Sparse PCA-based method (SPCMA: Zhao, Lindquist and Caffo, 2020), and Pathway
Lasso (Zhao and Luo, 2022). Like MMP, DMs use a linear combination of the neuroimag-
ing mediators to reduce the number of high-dimensional mediators. However, the weights
of DMs are determined by maximizing the LSEM likelihood rather than directly maximiz-
ing the MP. In addition, instead of relying on a single score, DMs makes use of k orthog-
onally transformed mediators. In this simulation study, we consider the DMs for k = 1,
and 2 as suggested by the algorithm. SPCMA also bears resemblance to MMP in its use
of sparse linear combinations of original mediators for reducing dimensionality. However,
while MMP seeks a weight vector ω that maximally recovers of the mediation effect, SPCMA
aims to identify multiple mediation pathways using orthogonal mediators. In contrast to the
linear combination-based methods (MMP, DMs, and SPCMA), pathway lasso directly im-
poses penalty terms on the regression coefficients in (1), which has the following form:
λ
[∑p

j=1

(
|αjβj |+ ϕ(α2

j + β2j )
)
+ γ

]
+ ψ

[∑p
j=1(|αj |+ |βj |)

]
. Here λ,ϕ,ψ ≥ 0 play a

crucial role in tuning the model. Note that the implementation of pathway lasso used in
this simulation was not fully optimized. We tuned only λ whereas the other two parameters
were constant: ϕ = 2 and ψ = 0. We also considered the special case λ = 0, known as the
two-stage (TS) lasso penalty, which shrinks mediation pathways separately for each αj and
βj .

For evaluation measures, we first considered the MP to assess whether our proposed
method was well-optimized. Note that in these experiments, we emulated the full media-
tion mechanism by generating the outcome from exposure only through multiple mediators.
Nevertheless, the true MP cannot be directly prespecified, since the exposure and mediators
were correlated. However, since intuitively a higher value is more likely to reflect the full
mediation mechanism, it was also considered as a measure when assessing the performance
of a model. In addition, to evaluate the performance of active mediator selection, we use the
comparison criteria of accuracy = TP+TN

TP+FP+TN+FN , precision = TP
TP+FP , recall = TP

TP+FN ,
and F1 = 2 precision·recall

precision+recall where TP,TN,FP , and FN denote the true positive, true negative,
false positive, and false negative count, respectively.

The results for sample size n= 100, and n= 200 are summarized in Table 1, and Table 2,
respectively. First, our proposed MMP approach outperformed the comparable methods in
terms of the MP, achieving values almost reaching 1. This indicates that the exposure and
outcome relation can be maximally explained by the mediated pathway. In addition, our pro-
posed method can accurately select informative mediators, attaining the highest performance
for roughly 3 out of the 4 variable selection measures. In particular, we focused on the F1

score, which is based on both precision and recall, for a small proportion of the informa-
tive mediators. The results show that our method outperformed the other methods across all
settings. When the number of mediators was increased to p= 200, there were false positive
mediators in the models for pathway lasso and TS lasso, as evidenced by the low precision
values. As suggested by Chén et al. (2018), we only apply DMs to the settings with p < n
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TABLE 1
Results (n= 100) of the experiment described in Section 4.1 which compare the performance of active mediator
selection and the mediation proportion. All evaluation measures reported in the table are averaged over the 100
replications, providing an overall estimate of the method’s performance across various scenarios (e.g., different

p - dimension of the multiple mediators, and ρ - correlation among the multiple mediators).

n= 100

p Method Accuracy Precision Recall F1 M.P.

ρ= 0

20

MMP 0.9475 0.8370 1.0000 0.9085 0.9650
SIS+MCP 0.9095 0.7536 0.9880 0.8504 0.9197

DMs1 0.2500 0.2500 1.0000 0.4000 0.8830
DMs2 0.2500 0.2500 1.0000 0.4000 0.9476

SPCMA 0.7485 0.5012 0.7480 0.5902 0.4393
Pathway 0.8995 0.9072 0.7060 0.7776 0.0097

TS 0.7595 0.5357 0.4060 0.4372 0.0146

200

MMP 0.9964 0.9052 0.9980 0.9427 0.9501
SIS+MCP 0.9532 0.4019 0.9780 0.5513 0.8314

SPCMA 0.8558 0.1188 0.7380 0.2037 0.5274
Pathway 0.8344 0.0018 0.0120 0.0031 0.0005

TS 0.9776 0.5539 1.0000 0.7055 0.0130

ρ= 0.25

20

MMP 0.9925 0.9821 0.9920 0.9857 0.9938
SIS+MCP 0.9125 0.7633 0.9820 0.8543 0.9436

DMs1 0.2500 0.2500 1.0000 0.4000 0.8680
DMs2 0.2500 0.2500 1.0000 0.4000 0.9589

SPCMA 0.7505 0.5006 1.0000 0.6671 0.7657
Pathway 0.6860 0.4833 0.7220 0.5538 0.0167

TS 0.5845 0.2781 0.4100 0.3239 0.0168

200

MMP 0.9966 0.9105 0.9920 0.9436 0.9979
SIS+MCP 0.9794 0.5871 0.9560 0.7168 0.8650

SPCMA 0.8268 0.1195 0.9340 0.2118 0.6714
Pathway 0.3088 0.0006 0.0140 0.0011 0.0026

TS 0.5644 0.0629 1.0000 0.1172 0.0182

ρ= 0.5

20

MMP 0.9990 1.0000 0.9960 0.9978 0.9990
SIS+MCP 0.8945 0.7396 0.9200 0.8149 0.9314

DMs1 0.2500 0.2500 1.0000 0.4000 0.7620
DMs2 0.2500 0.2500 1.0000 0.4000 0.9586

SPCMA 0.7465 0.4964 0.9920 0.6617 0.7643
Pathway 0.5835 0.3749 0.7820 0.4980 0.0222

TS 0.5835 0.2619 0.3180 0.2722 0.0171

200

MMP 0.9994 0.9805 1.0000 0.9889 0.9985
SIS+MCP 0.9776 0.5562 0.7920 0.6454 0.7247

SPCMA 0.8305 0.1125 0.8440 0.1982 0.5763
Pathway 0.1018 0.0014 0.0460 0.0026 0.0059

TS 0.0900 0.0268 1.0000 0.0522 0.0215

to ensure fair comparisons. In addition, since the loadings of factors by DMs may involve all
mediators, we did not prioritize comparing the mediator selection criteria of DMs. Overall,
our method exhibited robust performance across various settings. Therefore, our proposed
method may be an effective tool for selecting active mediators for mediation analysis with
a complete mediation effect. In summary, MMP provides a robust way for maximizing the
mediation effect and active mediator selection when dealing with multiple mediators.

4.2. Assessing MP inflation under settings of none and medium mediation effects . Since
our objective function seeks to maximize the mediation proportion, we perform additional
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TABLE 2
Results (n= 200) of the experiment described in Section 4.1 which compare the performance of active mediator
selection and the mediation proportion. All evaluation measures reported in the table are averaged over the 100
replications, providing an overall estimate of the method’s performance across various scenarios (e.g., different

p - dimension of the multiple mediators, and ρ - correlation among the multiple mediators.

n= 200

p Method Accuracy Precision Recall F1 M.P.

ρ= 0

20

MMP 0.9875 0.9600 0.9980 0.9771 0.9530
SIS+MCP 0.9345 0.8017 0.9980 0.8871 0.9650

DMs1 0.2500 0.2500 1.0000 0.4000 0.9340
DMs2 0.2500 0.2500 1.0000 0.4000 0.9718

SPCMA 0.7465 0.4809 0.5620 0.4919 0.4489
Pathway 0.9705 0.9950 0.8880 0.9255 0.0059

TS 0.9320 0.9095 0.8900 0.8770 0.0035

200

MMP 0.9946 0.8427 1.0000 0.9094 0.9736
SIS+MCP 0.9867 0.7024 1.0000 0.8141 0.9389

DMs1 0.0250 0.0250 1.0000 0.0488 0.9196
DMs2 0.0250 0.0250 1.0000 0.0488 0.9358

SPCMA 0.8458 0.1224 0.8460 0.2134 0.5070
Pathway 0.9981 0.9983 0.9260 0.9551 0.0043

TS 0.9882 0.8666 0.9040 0.8489 0.0034

ρ= 0.25

20

MMP 0.9830 0.9448 1.0000 0.9695 0.9998
SIS+MCP 0.9400 0.8107 1.0000 0.8944 0.9673

DMs1 0.2500 0.2500 1.0000 0.4000 0.8999
DMs2 0.2500 0.2500 1.0000 0.4000 0.9715

SPCMA 0.7470 0.4924 0.8540 0.6191 0.7182
Pathway 0.9670 0.9206 0.9880 0.9461 0.0053

TS 0.9585 0.9334 0.9840 0.9467 0.0032

200

MMP 0.9990 0.9723 1.0000 0.9836 0.9988
SIS+MCP 0.9906 0.7510 1.0000 0.8522 0.9536

DMs1 0.0250 0.0250 1.0000 0.0488 0.8450
DMs2 0.0250 0.0250 1.0000 0.0488 0.9371

SPCMA 0.8250 0.1250 1.0000 0.2222 0.6400
Pathway 0.9896 0.8419 0.9520 0.8732 0.0049

TS 0.9948 0.9134 0.9860 0.9349 0.0028

ρ= 0.5

20

MMP 0.9975 0.9917 1.0000 0.9955 1.0000
SIS+MCP 0.9360 0.8034 0.9980 0.8886 0.9678

DMs1 0.2500 0.2500 1.0000 0.4000 0.8843
DMs2 0.2500 0.2500 1.0000 0.4000 0.9739

SPCMA 0.7650 0.5262 0.8600 0.6486 0.7715
Pathway 0.8585 0.7139 1.0000 0.8127 0.0082

TS 0.6945 0.5271 0.9980 0.6646 0.0043

200

MMP 1.0000 0.9983 1.0000 0.9991 1.0000
SIS+MCP 0.9892 0.7279 0.9840 0.8305 0.9283

DMs1 0.0250 0.0250 1.0000 0.0488 0.7615
DMs2 0.0250 0.0250 1.0000 0.0488 0.9556

SPCMA 0.8250 0.1248 0.9980 0.2219 0.6194
Pathway 0.9005 0.4256 1.0000 0.5395 0.0110

TS 0.8099 0.2861 0.9960 0.3867 0.0035
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TABLE 3
The table presents the comparison of absolute bias in mediation proportion (MP) estimates obtained from

different methods. The absolute bias values are reported as averages over 100 replications. The values indicate
the degree of deviation of the estimates from the true values, with lower values indicating less bias. The standard

deviation of the MP estimates is shown in parentheses.

Scenario 1 (Noninformative Mediator : MP=0)

n p MMP SIS+MCP DMs1 DMs2 SPCA Pathway TS

100
10 0.017 (0.02) 0.018 (0.02) 0.046 (0.05) 0.046 (0.05) 0.043 (0.04) 0.018 (0.02) 0.015 (0.01)
50 0.024 (0.03) 0.027 (0.03) 0.140 (0.11) 0.139 (0.11) 0.157 (0.15) 0.018 (0.02) 0.024 (0.03)

200
10 0.010 (0.01) 0.010 (0.01) 0.023 (0.02) 0.023 (0.02) 0.019 (0.02) 0.011 (0.01) 0.009 (0.00)
50 0.013 (0.01) 0.011 (0.01) 0.069 (0.05) 0.069 (0.05) 0.057 (0.04) 0.010 (0.01) 0.010 (0.01)

Scenario 2 (Informative Mediator: MP=0.5)

n p MMP SIS+MCP DMs1 DMs2 SPCA Pathway TS

100
10 0.006 (0.01) 0.005 (0.01) 0.020 (0.02) 0.020 (0.02) 0.019 (0.02) 0.055 (0.03) 0.052 (0.02)
50 0.015 (0.07) 0.020 (0.03) 0.076 (0.06) 0.072 (0.06) 0.069 (0.05) 0.232 (0.21) 0.080 (0.02)

200
10 0.002 (0.00) 0.001 (0.00) 0.011 (0.01) 0.011 (0.01) 0.010 (0.01) 0.075 (0.02) 0.038 (0.01)
50 0.010 (0.05) 0.003 (0.01) 0.026 (0.02) 0.026 (0.02) 0.028 (0.02) 0.076 (0.04) 0.069 (0.02)

simulations to evaluate whether MMP artificially amplifies the underlying mediation propor-
tion. We investigated two scenarios: (i) the absence of any mediation effect, where none of
the mediators play a role in the relationship between the exposure and outcome variables
(i.e., the MP is zero), (ii) the case of partial mediation, where the mediator has a partial ef-
fect on the relationship between the exposure and outcome variables (i.e., the MP is around
0.5). We generated the exposure, outcome, and mediator simultaneously using a precision
matrix. Specifically, let Θij represent the (i, j)th element of the precision matrix Θ =Σ−1

of (X,Y,M) ∈ Rp+2, where Σ is the covariance matrix. It is worth noting that the partial
correlation between the ith and jth variables can be obtained by rij = −Θij/

√
ΘiiΘjj . In

both scenarios, we specified the direct effect by setting rXY = 0.5. In the first scenario, we
assumed that all mediators are not correlated with either the exposure or outcome variables
(rXMj

= rYMj
= 0 for all j = 1, · · · , p), resulting in a zero indirect effect. In the second

scenario, we assumed that the mediators are equally and partially correlated with both the
exposure and outcome variables (e.g., rXMj

= rYMj
= 0.5). Note that in this case, it is chal-

lenging to directly specify the mediation proportion due to the limitation of controlling the
marginal correlations between the mediators and the exposure variable using the precision
matrix. Under our model parameter specification, the mediation proportions vary around 0.5
(see Table 3).

The comparison results of estimating MP are provided in Table 3, where the absolute bias
is averaged over 100 replications. In both scenarios, the estimated mediation proportions by
MMP are accurate with no inflation, and our method demonstrates comparable performance
to the screening-based method and outperforms the shrinkage methods. In the scenario of
partial mediation (Scenario 2), the methods based on direct shrinkage (TS, and pathway lasso)
exhibit an underestimation of the mediation proportion (see Figure in the Supplementary
Material (Lee et al., 2024)). More detailed results and inference, including the estimation
of each parameter and corresponding p-values, are provided in the Supplementary Material
(Lee et al., 2024).

4.3. Assessing mediator selection under different Signal-to-Noise Ratios (SNR). This
simulation study stems from our real data application involving two sets of multiple neu-
roimaging measures from distinct imaging modalities, where we observed that the nonzero el-
ements of ω were predominantly linked to white matter integrity. Given the potential hetero-
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geneity in the Signal-to-Noise Ratio (SNR) characteristics across different imaging modali-
ties, this variability could impact the reliability and robustness of active mediator selection.
For example, there is a possibility that methods could introduce a bias in the selection of me-
diators, favoring those from imaging measures associated with a modality that has a higher
SNR. To investigate whether this issue occurs within our model, we conducted an additional
simulation study based on the following scenario.

We consider two sets of multiple mediators, M1 and M2, each characterized by distinct
SNR levels. Specifically, these mediators are sampled from multivariate normal distributions
with mean vectors set to zero and differing covariance matrices: Σ1 for M1 and Σ2 for M2,
where Σ1 ∈ Rp1×p1 and Σ2 ∈ Rp2×p2 . For the sake of the simplicity, we employ diagonal
covariance matrices of the same dimensions (p1 = p2), with distinct variances σ21 and σ22 for
Σ1 and Σ2, respectively. The p = p1 + p2 dimensional combined multiple mediator M is
then constructed by column-wise concatenation of M1 and M2, denoted as M= [M1|M2].
Within each set of mediators, we evaluate the performance of MMP in selecting active me-
diators and compare it with four other methods specifically designed for sparse mediator
selection: SIS+MCP, Pathway, TS, and SPCMA.

The results based on 100 replications are summarized in Table 4. The MMP method gener-
ally outperforms competing methods in both sets of mediators. This indicates a robust ability
to identify active mediators without introducing selection bias between the two sets, i.e.,
M1 and M2. Additionally, this further confirms the validity of the preferred selection of FA
measures over CT measures in the real data analysis.

5. Discussion. In this paper, we introduce a novel mediation model with multiple me-
diators within the LSEM framework, aiming to fully elucidate the effect of exposure on the
outcome through mediation effects. Our model development was driven by the practical chal-
lenge in neuroscience to understand the neural mechanisms explaining age-related cognitive
decline. While existing multivariate mediation methods aim to maximize the likelihood or
identify sparse mediation pathways, MMP focuses on fully uncovering the aggregate medi-
ation effect with parsimoniously selected mediators. We developed a new objective function
with a quadratic form so that the optimization does not involve non-identifiable parameters.
We also devised new algorithms to facilitate efficient implementation of the optimization.
The proposed method achieved excellent performance in our data example and simulation
analysis.

We applied our method to analyze a large cohort of multimodal neuroimaging data from
UKBB. The results revealed the importance of white-matter integrity for the cognitive decline
during the aging process. We hope that the findings will provide new directions for neuro-
science research, as the identified white-matter tracts may serve as potential target areas for
developing new treatments and interventions aimed at mitigating accelerated cognitive aging.
The estimated aggregate mediator as a linear projection of neuroimaging variables, reliably
explains a remarkably high proportion of the age effect on cognitive performance. Further-
more, the estimated aggregate mediator on its own offers a function-specific (e.g., cognitive
performance and sensorimotor control) measure of brain aging, rather than an overall brain
aging. In addition, as an objectively measured (neuroimaging-based) metric, it may become
a more reliable alternative to subjective cognitive test scores that are currently widely used.
The objective measure may reduce the measurement errors due to subjective evaluations of
cognitive performance. It may also be useful in clinical investigations of new treatments for
neurodegenerative disorders as a more accurate primary endpoint.

The proposed method is limited to identifying unknown causal orderings (pathways)
among mediators. The extension of our method to address this aspect presents an intrigu-
ing and promising avenue for future research.
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TABLE 4
Result (n= 100) of active mediator selection in the presence of two blocks of mediators with different SNRs, as

described in Section 4.3. The table presents averaged metrics over 100 replications, including Accuracy,
Precision, Recall, and F1 Score, to evaluate the performance of active mediator selection under scenarios with

different dimensions (p) and Signal-to-Noise Ratios (SNR) for each mediator block.

First block (σ21 = 1) Second block (σ22 = 2)

p Method Accuracy Precision Recall F1 Accuracy Precision Recall F1

40

MMP 0.9110 0.7608 0.9920 0.8552 0.9060 0.7434 1.0000 0.8484
SIS+MCP 0.8960 0.7306 0.9820 0.8318 0.9090 0.7491 1.0000 0.8525
SPCMA 0.7455 0.5008 0.7540 0.5928 0.7420 0.4985 0.9640 0.6544
Pathway 0.7420 0.5062 1.0000 0.6678 0.6970 0.4667 1.0000 0.6317

TS 0.8665 0.6868 1.0000 0.8051 0.7945 0.5894 1.0000 0.7295

First block (σ21 = 1) Second block (σ22 = 2)

80

MMP 0.9488 0.7489 0.9800 0.8382 0.9455 0.7197 0.9880 0.8269
SIS+MCP 0.8580 0.5496 0.9620 0.6772 0.8582 0.5451 0.9980 0.6844
SPCMA 0.6630 0.2516 0.8480 0.3865 0.6350 0.2532 0.9720 0.4011
Pathway 0.6567 0.2762 0.9960 0.4297 0.6132 0.2499 1.0000 0.3983

TS 0.6120 0.2562 0.9960 0.4037 0.5420 0.2203 1.0000 0.3596

First block (σ21 = 1) Second block (σ22 = 4)

p Method Accuracy Precision Recall F1 Accuracy Precision Recall F1

40

MMP 0.9200 0.7846 0.9880 0.8682 0.9170 0.7621 1.0000 0.8621
SIS+MCP 0.9010 0.7426 0.9800 0.8381 0.9145 0.7580 1.0000 0.8590
SPCMA 0.7495 0.5120 0.6182 0.5375 0.7420 0.5000 0.9820 0.6594
Pathway 0.7405 0.5072 1.0000 0.6679 0.6820 0.4535 0.9980 0.6193

TS 0.6740 0.4469 1.0000 0.6138 0.4965 0.3372 0.9980 0.5023

First block (σ21 = 1) Second block (σ22 = 4)

80

MMP 0.9535 0.7662 0.9860 0.8519 0.9440 0.7175 0.9980 0.8273
SIS+MCP 0.8588 0.5579 0.9740 0.6849 0.8605 0.5557 1.0000 0.6925
SPCMA 0.6958 0.2607 0.7340 0.3756 0.6362 0.2552 0.9840 0.4049
Pathway 0.6370 0.2644 0.9960 0.4155 0.5860 0.2354 0.9960 0.3798

TS 0.4940 0.2053 0.9960 0.3384 0.3440 0.1619 0.9980 0.2781

To summarize, the newly introduced MMP allows for prioritizing the mediation pathway
while selecting active mediators. While our method is developed with a specific focus on the
brain’s role in cognitive aging, it offers advantages in studying complex systems where high-
throughput mediators play a key role in mediating the effect of exposure on the outcome (e.g.,
gut microbiome mediating the antibiotic treatment on nutrient absorbing, Wang et al. (2019)).
In addition, the efficient optimization algorithms utilized in MMP make it highly scalable.
We provide a user-friendly software package at https://github.com/hwiyoungstat/MMP, and
also included in the Supplementary Material (Lee et al., 2024).

Funding. This research was partly funded by National Institutes of Health (NIH) grant
1DP1DA04896801, EB008432, and EB008281.

Data Availability Statement. The raw UKBB data used in this study can be accessed
via https://www.ukbiobank.ac.uk.

SUPPLEMENTARY MATERIAL

Supplement to “A New Multiple-mediator Model Maximally Uncovering the Media-
tion Pathway: Evaluating the Role of Neuroimaging Measures in Age-Related Cognitive

https://github.com/hwiyoungstat/MMP
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Decline”
This document contains a detailed derivation of Algorithm 1, the proof of Theorem 2.1, and
additional results of real data applications and simulation studies.

R package
This file contains the source code required to implement the proposed method. Future updates
will be hosted on GitHub at https://github.com/hwiyoungstat/MMP.
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