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Abstract. This non-technical review discusses the use of historical data in
the design and analysis of randomized controlled trials using a Bayesian
approach. The focus is on comparing the philosophy behind different ap-
proaches and practical considerations for their use. The two main approaches,
that is, the power prior and the meta-analytic-predictive prior, are illustrated
using fictitious and real data sets. Such methods, which are known as dynamic
borrowing methods, are becoming increasingly popular in pharmaceutical
research because they may imply an important reduction in costs. In some
cases, e.g. in pediatric studies, they may be indispensable to address the clin-
ical research question. In addition to the two original approaches, this review
also covers various extensions and variations of the methods. The usefulness
and acceptance of the approaches by regulatory agencies is also critically
evaluated. Finally, references to relevant software are provided.
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Reinsurance premium estimation for heavy-tailed claim amounts
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Abstract. Using a distortion risk premium principle, we consider estimation
of the reinsurance premium when claim amounts are heavy-tailed. We pro-
pose two methods to estimate the reinsurance premium. The first one is a
non-parametric estimator based directly on the empirical distribution, and the
second one is a semi-parametric estimator. Under some regularity conditions,
asymptotic normalities of the two estimators are established, and an algo-
rithm for calculating confidence bounds is presented. Further, finite sample
behaviors of the two estimators are compared by simulation studies.
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Objective Bayesian analysis for the differential entropy of the
Gamma distribution
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Abstract. The paper introduces a fully objective Bayesian analysis to obtain
the posterior distribution of an entropy measure. Notably, we consider the
gamma distribution, which describes many natural phenomena in physics,
engineering, and biology. We reparametrize the model in terms of entropy,
and different objective priors are derived, such as Jeffreys prior, reference
prior, and matching priors. Since the obtained priors are improper, we prove
that the obtained posterior distributions are proper and that their respective
posterior means are finite. An intensive simulation study is conducted to se-
lect the prior that returns better results regarding bias, mean square error, and
coverage probabilities. The proposed approach is illustrated in two datasets:
the first relates to the Achaemenid dynasty reign period, and the second de-
scribes the time to failure of an electronic component in a sugarcane harvest
machine.
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Abstract. The current work focuses on incorporating Randomized Response
Techniques in Adaptive Cluster Sampling scheme for effective quarantining
of COVID-19 suspected individuals, given the sensitive nature of the disease
and people’s tendency to hide their symptoms. Estimators have been proposed
for estimating the number of individuals in a population showing symptoms
of COVID-19, the number of individuals in a population not wearing a mask
and the optimal size of a quarantine cluster. The effectiveness of the proposed
sampling strategy has been demonstrated through empirical studies. Based on
the encouraging result, the proposed sampling strategy may be recommended
to survey statisticians for their use in the battle against COVID-19 or similar
contagious diseases.
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Abstract. We consider random coefficient autoregressive models of infinite
order (AR(∞)) under the assumption of non-negativity of the coefficients. We
develop novel methods yielding sufficient or necessary conditions for finite-
ness of moments, based on combinatorial expressions of first and second mo-
ments. The methods based on first moments recover previous sufficient con-
ditions by (Stoch. Process. Their Appl. 118 (2008) 1997–2013) in our setting.
The second moment method provides in particular a necessary and sufficient
condition for finiteness of second moments which is different, but shown to
be equivalent to the classical criterion of (Random Coefficient Autoregressive
Models: An Introduction (1982) Springer) in the case of AR(p) models with
finite order p < ∞. We further illustrate our results through two examples.
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Abstract. In this paper, we investigate a class of anticipated backward
stochastic differential equations (ABSDEs) with quadratic growth and un-
bounded terminal conditions. ABSDEs give us a duality with stochastic opti-
mal control problems with delay. On the other hand, quadratic ABSDEs can
be applied to delayed stochastic linear-quadratic control problems. We prove
the well-posedness of ABSDEs with quadratic growth and unbounded ter-
minal values. To obtain the existence result, we first prove a priori estimate
for the solutions and then use a limit argument. We also derive a comparison
theorem using θ -technique, which gives uniqueness of the solution.
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Abstract. We consider a fully coupled fractional mean-field forward-
backward stochastic differential equation (MF-FBSDE) whose coefficients
not only depend on the solution triple (X, Y, Z) but also on its distribution.
We prove the existence of a unique solution for such MF-FBSDEs. In addi-
tion, we also prove the weak monotonicity and Lipschitz’s continuity and a
comparison theorem.
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Abstract. In this paper, a new efficient and robust estimator of the Pareto
tail index is proposed. Although the emphasis is on the Pareto distribution,
all results are valid for the estimation of the scale/rate parameter of the two-
parameter exponential distribution. The approach is to assume that the obser-
vations were generated from the FLLP-contaminated Pareto, that is, a mix-
ture of the Pareto and FLLP distributions. The latter is an original distribu-
tion designed specifically to represent any outlier distribution. The parame-
ters are estimated using an iterative process adapted from the expectation-
maximization (EM) algorithm to optimize the properties of the estimators in
a robustness context. A robust confidence interval for the Pareto tail index is
also given. It is shown through different asymptotic results that these estima-
tors reach a breakdown point of 50% with full efficiency. Their simultaneous
high efficiency and high robustness are also shown for finite samples in a
large Monte Carlo simulation study. Finally, an example with a real dataset
of daily crude oil returns is given.
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Abstract. The present paper deals with the problem of trajectory fitting es-
timation for nonlinear stochastic differential equations with reflection based
on continuous-time observation. Under some regularity conditions, the con-
sistency, the rate of convergence and the asymptotic distributions of the tra-
jectory fitting estimator are discussed by using Skorohod equation, Toeplitz
lemma and the strong law of large numbers.
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